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It is shown that for classical, d-dimensional lattice models with finite-range 
interactions the translation-invariant equilibrium states have the property that 
their mean  entropy is completely determined by their restriction to a subset of 
the lattice that is infinite in ( d -  1) dimensions and  has a width equal to the 
range of the interaction in the dth dimension. This property is used to show 
proper convergence toward the exact result for a hierarchy of approximations of 
the cluster-variation method that uses one-dimensionally increasing basis clus- 
ters in a two-dimensional lattice. 
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1. INTRODUCTION 

The cluster-variation method (1) (CVM) is a method of obtaining approxi- 
mations to the equilibrium thermodynamic properties of lattice systems. 
Although the method has been applied to a variety of systems over a 
number of years, (2 10) there have been few investigations (11~ into the 
underlying nature of the approximations that are involved in the 
CVM. (12-15) More specifically, whereas it is the general belief that the 
CVM can be used to generate a sequence of ever more accurate approxima- 
tions to thermodynamic quantities, the question of proper convergence of 
such sequences has received virtually no attention. (15) 

This paper originated from an attempt to understand some results of 
Kikuchi and Brush. (16) They used a sequence of CVM approximations to 
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the two-dimensional, nearest-neighbor lattice problem in which the basis 
cluster was increased one dimensionally, in such a way that even in the 
limiting case the basis cluster only covered a one-dimensionally long double 
line of lattice points. Notwithstanding the fact that in this way the CVM 
calculations seemed to refer to a one-dimensional lattice, the results indi- 
cated proper convergence toward the exact result for the two-dimensional 
system. A heuristic explanation has been given by establishing a connection 
with a transfer-matrix approach under some physically reasonable, but 
mathematically unproven assumptions. (17) Since, however, the CVM can 
most conveniently be looked upon as a class of approximations to the 
variational characterization of translation-invariant equilibrium states pro- 
vided by the statistical mechanical theory of lattice models, (12-15) it seemed 
instructive to try and understand the results of Kikuchi and Brush from this 
point of view. 

The organization of this paper is as follows. In Section 2 we review 
some concepts we will use and introduce the necessary notation: In Section 
3 we prove the existence of a variational characterization of restrictions of 
equilibrium states and prove that translation-invariant equilibrium states 
have the property that their mean entropy is defined by their restriction to 
a subset of the lattice which has finite width in one of the directions. This 
property offers an explanation for the results of Kikuchi and Brush. In 
Section 4 we describe a sequence of CVM approximations involving 
one-dimensionally large clusters for which proper convergence can be 
proven, and in Section 5 we discuss briefly the "C  scheme" of CVM 
approximations introduced by Kikuchi and Brush. Section 6 contains some 
final remarks. 

For simplicity of presentation the arguments will be developed for the 
case of nearest-neighbor interactions on the square lattice in two dimen- 
sions. However the results presented are easily generalized to a much wider 
class of models (of. Section 6). 

2. PRELIMINARIES 

Consider the square lattice in two dimensions, Z 2. The origin (0, 0) 
Z 2 will be denoted by 0 and 81 and 82 will be the unit vectors (1,0) and 

(0, 1), respectively. We will identify elements of Z 2 with translations over 
the corresponding vectors. 

Consider the following (Ising) model on Z 2. With each lattice point or 
site a ~ Z 2 we associate a variable S a ("spin"), which can take values in a 
finite set ~20. The configuration space for a finite subset A of Z 2 is 
aA = (~20) A, and the configuration space for the thermodynamic (infinite) 
system on the whole of Z 2 is ~2 = (ao) z2. 
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Viewing f~0 as a discrete metric space, observables of the system can be 
identified with real-valued elements of C(f~) [respectively, C(aA) in the case 
of a finite subsystem], the continuous functions on the configuration space. 
On f~o we take as a priori measure the (unnormalized) counting measure t%- 
The product measure on ~A will be denoted by/% as well. Integration with 
respect to #0 will be denoted by the symbol ( �9 }0. 

The Hamiltonian for the finite nonempty subset A of Z 2 is 

H [ A ] =  E O[XI  (1) 
X c A  

where q)[X] is the potential function associated with the cluster (set of 
lattice points) X. The interaction �9 will be taken to be translation invariant 
and, as pointed out in the Introduction, for reasons of simplicity of 
notation and visualization, we will assume that the interaction is nearest 
neighbor only instead of, more generally, finite range. As a consequence, 
the energy per site for the thermodynamic system is given by the observable 

e = q ) [ ( 0 } ]  + q)[{0,5,}] + q)[{0,62} ] (2) 

Notice, that this observable lives on three lattice points only. 
In the language of this approach a (macro-) state 0 of the system (a 

specific configuration can be viewed as a microstate) is a positive linear 
functional on C(~2), normalized in such a way that O(1) = 1. Restricted to 
C(f~A) with A finite it defines a density function p[A] such that for all 

f ~ C(aA) 

p( f )  = <f.  0[A]} 0 (3) 

The existence of these density functions is guaranteed because of the simple 
structure of the configuration space. 

Lattice translations induce translations on C(f]) in a natural way; 
hence a state may be translation invariant, and the set of translation- 
invariant states will be denoted by I. It is precisely for states in I that e 
given by Eq. (2) represents the energy per lattice point. 

Translation-invariant equilibrium states (we shall call them simply 
equilibrium states in this paper) are characterized by the variational princi- 
ple (cf. Refs. 18 and 19) 

f = min (o(e) - s(p)} (4) 
OEI 

Here, fi = (kT)- ]  has been taken unity and 

so(A) 
s(o) = lim (5) 

a-,z2 [AI 

is the mean entropy of the state 0; the entropy of the finite subsystem in A 
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in the state p, S~(A), is given by 

So(A ) = - p ( l o g o [ A ] )  = - @ [ A ] l o g o [ A ] )  o (6) 

f is the free energy per lattice point. Thus, } ~ I is an equilibrum state for 
the thermodynamic system on Z 2 if and only if 

f = b(e) - s(~) (7) 

The cluster-variation method (CVM) can be shown to be a method of 
approximating the variational principle Eq. (4). (15) 

3. A RESTRICTED VARIATIONAL PRINCIPLE 

In this section we will give our main theorem, which involves a 
variational characterization of restrictions of equilibrium states. 

Let us introduce some notation for subsets of Z2 which we will use in 
the sequel: 

Lni-.--. 

On i -= 

L i =  

o i =  

RnP -- 

R n = 

{Z = (Z I ,Z2 )  ~ a 2 i z  I ~ {0 . . . . .  ?1 --  1}, z 2 ~--- i} (8)  

{z  = (z  1 ,z2)  E Z 2 I z I  (~ {0 . . . . .  /'1 - 1}, z 2 ~ { i , i  + 1}} (9)  

{z = (z, ,z2)~ Z21z2 -- i }  (10) 

{Z = (Z 1 ,Z2) ~ Z21 z2 E ( i , i  + 1)} (11) 

{z  = (z , , z2 )  e Z 2 l z ,  (o . . . . .  , ,  - 1}, E {-p,e)) (12) 
(z  = (z,,z2) E Z2lz ,  @ {0 . . . . .  n - 1}}  (13) 

(respectively lines, double lines, and rectangles). In those cases where the 
position of a specific set in the lattice is irrelevant (e.g., because of 
translational invariance), we will omit the superscript i. 

Consider the infinite double line D. 
I o will denote the set of those states on C(~2o) that are invariant for all 

translations within D; specifically this includes translations over a unit 
distance in the 82 direction as well as all translations in the 61 direction. (Of 
course, within D translations in the 62 direction can be applied only to 
observables that live on either the "lower" or the "upper" line of D only.) 
Consequently any state p E I o has the property that if A and B are subsets 
of D, and A is a translate of B, then the restrictions of 0 to C(f~A) and to 
C(~28) are the same (isomorphic). This property is used in the proof of 
Lemma I below [Eq. (19)]. 

Definition I. For any state p E I o 

So(On ) - So(Ln) 
b(p) = lim 

n---~ oo n 
(14) 
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The existence of this limit follows from the existence of lim n-I.S0(Ln) 
and l im(2n)- l .Sp(D,)  (cf. Ref. 18, p. 46). Since for any state p E I the 
restriction of p to C(~2D) belongs to I D , Definition I can be applied to p E I 
as well. 

For any O E I we have, by a standard argument involving the strong 
subadditivity of the entropy So(A ) and translational invariance of p (cf. 
Ref. 18, p. 47), 

S p ( D . ) -  So(L.) >1 n.s(o) (15) 

SO 

b (o) >/ s (p), for any p ~ I  (16) 

It is easy to prove (cf. Ref. 18, p. 44) that b(p) is an affine function on I 
and ID, meaning that for p, o ~ I or I D, and a ~ [0, 1], 

b(ap + (1 - a)o) = ab(p) + (1 - a)b(o)  (17) 

Please notice for later reference that the above applies to periodic states on 
Z 2 or D as well. 

We now define the "restricted variational principle": 

fD ---- rain {o(e) -- b(p)} (18) 
P~ID 

States that attain the minimum will be called "restricted equilibrium 
states." 

The restricted variational principle differs from the variational princi- 
ple Eq. (4) in two aspects: the entropy s(o) is replaced by b(o), which is 
generally larger by Eq. (16), and the minimum is sought among the states of 
I D instead of I. Since the restriction of 1 to C(aD) belongs to I D this 
includes, but might extend, the range of variation of the "standard" 
variational principle Eq. (4). 

What we will show in the sequel is essentially the following: replacing 
s(p) by b(o ) does no harm because all equilibrium states are found among 
those states for which equality holds in Eq. (16), and allowing variation 
among the states of I D instead of I does no harm because every element of 
I D is the restriction of an element of I. 

Theorem I. Concerning the relation between the variational princi- 
ple Eq. (4) and the restricted variational principle Eq. (18) the following 
holds: 

(i) fD = f; 
(ii) If 0 E I ' is an equilibrium state then the restriction of p to C(~2D) 

is a restricted equilibrium state; 
(iii) Any restricted equilibrium state is the restriction to C(ftD) of an 

equilibrium state. 
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For the proof of this theorem we will need the following lemma. 

L e m m a  I. 

(i) 

(ii) 

(iii) 

For any O ~ ID there exists a sequence (~3~) in / . such  that 

lira s (~  = . oo- ) b(0)  

lira ~30(e) = 0(e) 

lira t3.[ A 1 = 0[ A ], for any finite A c D 
n ~ o o  

Proof of Lemma I. Take arbitrarily O ~ ID and consider the asso- 
ciated density functions o[Dn] and o[L.]. Using these functions we define 
density functions on the rectangular sets R. e [Eq. (12)] for all p E N by 

Pn[ RnP] = II,=-p+lP[P--' L.i] (19) 

For configurations for which the denominator is zero, the numerator is zero 
as well and we define the quotient to be zero. Now ~.[R?] is a well- 
defined, properly normalized density function and the set of (pn[RnP])p~N 
is compatible, meaning that ~.[R. ?+1] can be reduced to ~[R.:] by 
integration over the spins in R. ?+ 1\RnP. Hence this set of density functions 
defines a state t~. on C(~2Ro), with R. given by Eq. (13). The state t~. is 
translation invariant with respect to translations over z = (0, za) E Z 2. 

Now make t~. into a state ~,' on C(~2) (i.e., for the thermodynamic 
system on Z 2) by covering Z 2 with disjoint copies of R. and taking the 
appropriate translate of t~. on each of these copies; ~ j  will be the product 
state of all of these translates. ~.' is then translation invariant in the 62 
direction and periodic with period n in the 81 direction. From t~.' we 
construct a translation-invariant state t3~ by averaging over translations: 

= 1 ~ p~'.r~ (20) 
8. n 

z ~ L .  ~ 

where % denotes translation over z and operates on C(~2)3 ~9) In this way 
we can construct a sequence (t3.) in I for any state 0 in ID. We now show 
that this sequence satisfies the conditions of the lemma. 

Since the entropy function s( . )  is affine on translation-invariant states 
as well as on periodic ones, (18' 19) we have from Eq. (20) 

s(t3.) = s(• ')  (21) 

Since ~ j  is a product of states t~n, 

s(s  = s(L) (22) 
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and with Eq. (19) we find 

S o(R:) 
S(~n) = lim p-~oo n(Zp + 1) 

= l i m  1 p--~ n(2p + 1) [2pS~ - (2p - I )So(L.)  ] 

So(D. ) - So(L.)  
= ( 2 3 )  

n 

(Note that this is the entropy of a Markov shift(2~ Combining Eqs. (21), 
(22), (23), and Definition I we find 

lira s(t3n) = b(p) 

As to the energy term, from Eq. (2) we see that e ~ C(~2D2o ), SO 

p(e) = (p[ D2~ l.e)0 

= (p[ D. ~ for all n/> 2 

By definition [Eq. (20)] 

A 1 
p,(e)  = n 

z ~ L .  ~ 

Of all the n translates %e of e, only one is not an element of C(f~D o). If 
zze ~ C(~D~ then 

~.'('rze ) = ~.(%e) = (p[ D.~ = o(e) 

so t~n(e) is the average of (n - 1) terms p(e) and one other (but finite) term. 
Hence 

lira t3.(e) = 0(e) 
n ---> O 0  " : 

In an analogous way one shows that for any finite A c D 

lim t3.[A] = p [ A ]  

This concludes the proof of Lemma I. �9 

Proof  o f  T h e o r e m  I. Let ~ E I be an equilibrium state and let PD be 
its restriction to C(~2D). Then, using Eq. (16), 

f =  b(e) - s(b) ~ ~(e) - b(~) = ~D(e) -- b(bD) >>- fD 

s o  

fD < f (24) 
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Suppose f - fo  = e > 0 and let ~ ~ I D be such that 
C 

fD <- ~(e) -- b(~) < fD + -~ = f -  

According to Lemma I there is a sequence (~3n) in I such that for n 
sufficiently large 

A s 
Ion(e) - t~(e)] < g 

" L and I s (on) -  b(~)l < 8 

so we have for n sufficiently large 
A s C 

f < t3,(e) - s(p,) < ~(e) - b(tS) + ~ < f -  

which is a contradiction, so it must be that 

f =f 
This proves the first part of the theorem. 

As to the second part, again let b c I be an equilibrium state and let 
0D be its restriction to C(~2D). Then 

f =  b(e) - s(~) >>. bD(e) - b(bD) >1 fD = f 

SO 0D is a restricted equilibrium state. Incidentally, this proves also that the 
minimum in Eq. (18) is indeed attained. 

As to the third part, let PD ~ ID be a restricted equilibrium state and 
let (t3n) be the corresponding sequence of states in I as given by Lemma I. 
According to Theorem 1.4 of Ref. 18 there is a state # on C(f~) such that at 
least for a subsequence of (t3n) 

l i r a  t3n[ K] = 0I K],  for all finite K C Z 2 (25) 

Obviously, t~ is translation invariant. Since 

S~(A) 
s03)-- inf AcZ2 Iml 

there is for any ~ > 0 a A o c Z 2 such that 

S~(A0) 

Because of Eq. (25) and the finiteness of the configuration space f~o, there is 
an N(E) such that for all n /> N(~) 

S~(AO)lAol S~(A0)la01 [< s (26) 

So, for any e > 0 there exist A o c Z 2 and N(~ )~  N such that for all 
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n >/ N ( 0  

s~,,(A0) S~(A0) 
s(t;.) < IA0~ < IA0~ + 2 < s(t;) + c  

From this it follows that 

b(~D) = lim s(t~,) < s(t~) 

Since moreover by Eq. (25) fi.(e)--->fi(e) and by Lemma I f i , ( e ) ~ D ( e ) ,  
t~(e) = ~D(e) and we have 

f = fD = OD(e) -- b(PD) >1 fi(e) -- s (~)  >~ f 

Hence fi is an equilibrium state, and combining Eq. (25) and Lemma I (iii) 
its restriction to C(~2D) is 0t~. 

This completes the proof of Theorem I. [] 

Corollary I. If ~ E I is an equilibrium state then 

s(~) = b(~) 

Proof. Since b is an equilibrium state 

f = b ( e )  - s (} )  

Since the restriction PD of } to C(gD) is a restricted equilibrium state (by 
Theorem I) 

f =fD = PD(e) -- b(bD) = ~(e) - b(b ) 

Hence s(b) =b(b). [] 

4. A CONVERGENT MINIMIZING SEQUENCE FOR THE 
RESTRICTED VARIATIONAL PRINCIPLE 

In this section we discuss a specific hierarchy of cluster-variation 
approximations involving only one-dimensionally long finite clusters and 
we prove proper convergence for this hierarchy. 

Theorem I tells us that it is possible to reduce the number of lattice 
dimensions involved by one (in the case under consideration from two to 
one) at the cost of using b(p) instead of s(p). The CVM in general is based 
on the idea of approximating s(p) by an expression in terms of a finite 
number of finite clusters. It is a natural idea to try to approximate b(p) in a 
similar fashion. Recalling the definition of b(p) we approximate b(p) by 

So(D~ ) - S o ( L . )  
(27) B . ( o )  = n 
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so by Definition I 

lim B,(O) = b(o) (28) 

for all p C I e and all p E I. 
We now replace the restricted variational principle by the following 

variational problem: 

f ,  = min (On(e) - Bn(Pn) ) (29) 
Pnl.t. 

Here the minimum is sought among the "locally translation-invariant" (1.t.) 
states p. on C(f~Do), which means that the state p. should be invariant for 
translations contained within D.. In other words, if pn[D.] is the density 
function associated with p., and A and B are subsets of D. and B is a 
translate of A, then the density functions p.[A] and p.[B] obtained from 
p.[D~] by integrating out the spin variables in D.\A and D.\B,  respec- 
tively, should be the same (isomorphic). This notion of local translation 
invariance (called internal translational invariance in Ref. 15) is what 
remains of the translation invariance obeyed by the states p E I 9 figuring 
in the restricted variational principle Eq. (18). 

By a standard argument (continuous function on a compact set) the 
minimum in Eq. (29) can be shown to exist. 

Lemma II, For any locally translation-invariant state p, on C(~D, ) 
there exists a state O ~ ID such that 

(i) b(o)= B,(p,) 
(ii) [p(e)-  p,(e)l <. (2/n).[[ell 

where the norm is the supremum-norm on C(~2). 

Proof. The proof will be similar to the proof of Lemma I. Cover D 
with disjunct copies of D, and take the appropriate translate of p, on each 
of these copies; denote by tS, the product state of all these translates, fi, is 
locally translation invariant for translations in the 82 direction and periodic 
with period n in the (~1 direction. Define p by averaging over translations 
[cf. Eq. (20)] 

1 ~ t~.~_ Z (30) 
0 =  n 

z E Ln  ~ 

Since b(.) is affine on periodic states 

b(p) = b (~)  

Sa.(D,, ) - S~.(Lm) 
= lim 

m--) QO m 

Spo(n, ) - Sp.(L,) 
= = B . ( o . )  

n 
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Since e E C(f~D20 ) it follows from Eq. (30) 

p(e)  = n - 1 p . ( e )  + 1 f i . (~(o, . - , )e t  
n 

SO 

I p ( e ) -  p.(e)l < 21tell 
n 

which completes the proof of Lemma II. [] 

T h e o r e m  II. Wi th f .  defined by Eq. (29) a n d f b y  Eq. (4) 

lira f , =  f 
n ~ o o  

Proof. 
rem I 

f - -  ~(e) - b(~) 

Then, for all n 

f~ <<. ~(e)  - Bn(~) ) 

Let, for each n, t3. be a 1.t. state on C(f~z~.) for which 

fn = ~ . (e )  -- B . (~ . )  

By Lemma II states t~,, ~ ID exist such that 

f <  t~(e) - b(•)  < t3.(e) + 2[]el~] - B.(t3.) 
?/ 

- - f .  + 21lell 
n 

Combining Eqs. (32) and (34) we find 

f -  2Nel---~l < f.  -<< ~(e) - n . ( ~ )  
1'/ 

Taking n --) r we find 

f < l i m L  <. ~(e) - b(r,) = f 

Let ~ E I D be a restricted equilibrium state; hence by Theo- 

(31) 

(32) 

(33) 

(34) 

(35) 

Hence l i m . ~ f .  = f and the proof of Theorem II is complete. [] 
Our next theorem will show in what sense solutions of the variational 

problem Eq. (29) approximate true equilibrium states. First we formulate 
another lemma. 

Lemma III. For any locally translation-invariant state p~ on C(f~Do ) 
there exists a state ~. C I with 

(i) s ( ~ )  = B.(O.)  

(ii) ] ~ . ( e ) -  p.(e)[ < 2"[]e[1 
n 



296 SchliJper 

Proof .  The proof  of this lemma is contained in the proof  of Lemma 
I. Alternatively, one can combine  Lemma  I and II. [] 

With regard to the subsequent  theorems, it is of interest to notice that 
the proof of Lemma  III is constructive in nature:  given On, On can be 
constructed by  the procedure  outl ined in the proof  of Lemma  I. 

Theorem III. Let, for each n, t3, be a 1.t. state on C(f~D~ ) such that 

f .  = rain {on(e) - B . ( p . )  } = ~ . (e )  - Bn(~n ) 
pnl.t. 

Let, for each n, #n E I be the state on C(f~) corresponding to t3. according 
to Lemma III. Then  any w*-limit point  of (0n) is an equilibrium state. 

Proof. Let } E I be a w*-limit point  of (0n). This means there is a 
subsequence which we will denote by (0n) as well such that ~. [ A ] ~  ~[A] for 
all finite A in Z 2. Choose arbitrarily c > 0. Now write 

#(e) - s(~) = [~(e) - ~n(e)] + [~ . (e)  - t3.(e)] + [t3.(e) - Bn(t3n) ] 

-I- [ B n ( ~ n  ) - S(pn) ] -I- IS(On) -- S(p)] (36) 

For  n sufficiently large we now have 

e (37) I~(e) - }.(e)[  < 

w *  

because On > P; 

by Lemma III; 

by Theorem II; 

by Lemma III; and 

(38) I~n(e) - t3n(e)l < 

A A 

on(e)  - B.(pn ) = f .  < f +  (39) 

e (41) - < 

by the upper  semicontinuity of s. (~8'19) Hence  

f <  #(e) - s(#) < f +  

Thus f = ~(e) - s(~), which means that } is a translation-invariant equilib- 
rium state. 

This completes the proof  of Theorem III. [] 

Bn(~n ) - s(ffn) = 0 (40) 
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5. THE " C - S C H E M E "  OF THE CVM 

In the paper (161 which introduced the idea of using the CVM with 
one-dimensionally increasing basis clusters to obtain a sequence of approxi- 
mations to the variational problem for two-dimensional lattice systems, 
Kikuchi and Brush proposed a hierarchy of CVM approximations they 
called the C scheme. In this scheme the following expression was used as 
the nth approximation to the entropy per site s(o): 

Cn(P) = [So(Dn)  - So(Ln) 1 - [So(Dn_l)  - So(Ln_l )  1 (42) 

The variational problem corresponding to this approximation is 

f c = rain {p.(e) - Cn(p.)} (43) 
pnl.t. 

where the minimum is sought among the locally translation-invariant states 

on on C(aoo ). 
Notice that, quite apart from the reasoning employed by Kikuchi c.s. 

to obtain the approximation Eq. (42), the kind of expression as given in Eq. 
(42) can be expected to approximate s(p) if one adopts the intuitive 
reasoning that for any large set A of lattice points So(A ) should be more or 
less equal to IN.sO). The fact, however, that these C approximations do 
not contain nor utilize information about the lattice system apart from that 
contained in the subsystem D, even for n ~ oe, remains a bit puzzling from 
this point of view. The picture is clarified, of course, by the contents of the 
previous sections of this paper, since obviously C n (p) should be regarded as 
an approximation to b(o ) rather than s(o), and the corresponding varia- 
tional problems Eq. (43) are in first instance approximations to the re- 
stricted variational principle Eq. (18) rather than to the variational principle 
Eq. (4). In this respect the C scheme is analogous to the sequence of 
approximations utilizing Bn(o) introduced in Section 4 and in fact the 
relation between the approximations Bn(p) introduced in Eq. (27) and the 
approximations Cn(o) is a close one: the sequence Bn(p) is just the first 
Ces/tro mean of the sequence Cn(P): 

Bn(O) = n Ci(o) (44a) 
i = 1  

C~(p) = nB, (o)  - (n - 1)B,_l(p) (44b) 

First, let us show that C~ (0)~  b (0), as expected. 

Lemma IV. For any 0 ~ ID 

lim C~(p .)=b(P) 
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Proos Write 

co(o) = [ So(Do~ So(Do~ + [ S (Do0  0}) - So(DO0] 

- [  So(L ~ - So(L~ (45) 

Using translational invariance of 0 and the strong subadditivity of the 
entropy So(. ) it can be shown (Ref. 18, p. 47) that each of the three terms 
in angular brackets in Eq. (45) is a decreasing function of n and bounded 
from below by zero, so lim, C, (O) exists and it is equal to b (0) by Eqs. (44). 

[] 

Our next theorem deals with the convergence of the C scheme. 
Unfortunately, in this case we have not been able to prove unconditional 
convergence. The basic difficulty may be illustrated by the following 
example. 

Consider the function f :  [0, 1]--> R defined by f (x )  = (x - 1)2. Then 

M - -  min f ( x ) = O  
x~[0,1] 

and the minimum is attained in the point X = �89 We will now construct a 

sequence of approximations f~ to f such that f . ( x ) ~ f ( x )  for all x E [0, 1], 
but with M. ~ M and X. -/+ X, where 

M . = f ~ ( X . ) =  min f~(x) 
x~[O,1] 

Consider the well-known C o~ function q~" R ~ R defined by 

0 ( x ) - - e x p  1 - x  2 ' 

~ ( x ) - - 0 ,  if x ~ R \ ( - 1 , 1 )  

Now take 

f~(x) = f ( x )  - ~ .e.ep(2nx - 2) 

It is easily shown that for all x ~ [0, l]f.(x)-->f(x), and that M n ~ - 1 and 
xn--> 0. 

In the case of the approximations B.(O) to b(o) discussed in Section 4 
the "extension theorems" Lemmas II and III served to exclude this kind of 
"pathological" behavior. 

In the case of the C scheme we can offer the following theorem, which 
proves convergence subject to a (in practical cases verifiable) condition [Eq. 
(46)]. 

Theorem W. Let, for each n, ~3. be a 1.t. state on C(faD. ) such that 

f c = min {t%(e) - C.(pn)} = ~n(e) - C.(~n ) 
p.Lt. 
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Let, for each n, ~. E I be the state corresponding to t3. as given by Lemma 
III. Let ~ ~ I be a w*-limit point of the sequence (~.). Suppose the 
following condition holds: 

lim [ C~(t3.) - B~(t3.) 1 = 0 (46) 
R --)" ~ 

Then (i) l i m . _ ~ f ,  c = f and (ii) ~ is an equilibrium state. 

P r o o f .  Choose ~ > 0. Now 

~ . ( e )  - s ( ~ . )  = ~ . ( e )  - ~ . ( e )  + ~ . ( e )  - C . ( ~ . )  + C . ( ~ . )  - B . ( ~ . )  

^ r C + B , ( p , )  - < + L  c + + 0 

for n sufficiently large, so on one hand we have for n sufficiently large 

f <  ~.(e) - s(~.) ~< f c + e  (47) 

On the other hand, with Pe E I an equilibrium state, so 

f =  pe (e )  - S(pe)  - - =  pe (e )  - b(Pe)  (48) 

we have for n sufficiently large 

fn c <<. Pe(e )  -- Cn(Pe ) <~ Pe(e )  - b (pe)  + e = f + e  (49) 

Combining Eqs. (47) and (49) we find 

f - e < . f . c < f + e  

for n sufficiently large; hence f . c - - ) f .  This proves the first part of the 
theorem. 

As to the second part, consider a subsequence of (~.) which converges 
to/5. Now 

~ ( e )  - s ( ~ )  = } ( e )  - } . ( e )  + ~ . ( e )  - ~ . ( e )  + ~ . ( e )  - C . ( ~ . )  

+ C~(~ . )  - B . ( ~ . )  + B . ( ~ . )  - s ( ~ . )  + s ( ~ . )  - s (~ )  

+7 

for n sufficiently large. Thus 

f~< ~(e) - s(~) ~< f +  e 

so ~ is an equilibrium state. This completes the proof of Theorem IV. B 
Notice that in actual computations utilizing the C scheme it is easy to 

compute C . ( ~ . ) -  B~(~ . )  after the nth CVM-approximation to the equilib- 
rium state has been obtained. Consequently it is possible in practice to get 
at least an indication whether condition (46) is fulfilled. 
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6. FINAL C O M M E N T S  

Although the discussion in this paper has been limited to the case of 
nearest-neighbor interactions on Z 2 for reasons of simplicity of notation 
and visualization, the results can be generalized immediately to general 
finite-range interactions on any d-dimensional lattice that can be mapped 
one-to-one onto Z d. For instance, if the lattice is Z a and the interaction has 
range r, the role of the sets D,  will be taken over by sets 

U , =  { z = ( z l , . . .  ,zd) E Z d l  0<~ z i <~ n -  1 

f o r / =  1 . . . . .  d -  1 ; O < z  d<~ r - l )  

and the sets L n should be replaced by 

V n = { z  ~-- (Z 1 . . . .  , z~) E Za lO  <~ z, < n - 1 

f o r i = l  . . . . .  d -  1 ; 0 <  z a~< r - 2 )  

Instead of b(p) the following quantity is of interest; 

Sp( U, ) - Sp( V~ ) 
t (O) = .-~lim n 7- i 

All the results presented in this paper hold, with appropriate changes, for 
this more general situation. 

Instead of restricting one's attention to translation-invariant equilib- 
rium states one can deal with periodic states in exactly the same way. This 
corresponds to the admission of a sublattice structure. 

As illustrated by the example of a sequence of smooth functions on 
[0, 1] in Section 5, simple pointwise approximation of s(o) by an expression 
in terms of a finite number of finite clusters, as is the nature of the CVM, is 
generally speaking insufficient to guarantee that the CVM approximations 
to the free energy and to the equilibrium state converge toward the exact 
results. This observation might serve as a stimulus to investigate the 
question of convergence of hierarchies of CVM approximations in more 
detail. 

On an altogether different level, the investigation reported on in this 
paper may be regarded as an attempt to extend the treatment of the 
one-dimensional lattice gas on the basis of the variational principle as given 
by Brascamp (21) to more dimensions. Brascamp points out the connection 
between his exact calculation and the Bethe approximation, which is 
known to be exact in one dimension. Since it is also well known that the 
CVM can be regarded as an extension of the Bethe approximation, it is not 
surprising that extensions of Brascamps procedure supply information 
about the CVM. 
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